A NOTE ON THE IDEAL $I[S; \lambda]$

ASSAF RINOT

ABSTRACT. Shelah asked whether GCH implies that $\Diamond(E_{cf(\lambda)}^{\lambda^+})$ holds for every singular cardinal. We give an affirmative answer for every singular cardinal λ of uncountable cofinality for which $\{\mu < \lambda \mid \Box_{\mu}^* \text{ holds}\}$ is stationary in λ .

The proof builds on a recent paper by Levine and goes through showing that for every singular strong limit cardinal λ of uncountable cofinality such that $\{\mu < \lambda \mid \Box_{\mu}^{*} \text{ holds}\}$ is stationary in λ , for every stationary $S \subset \lambda^{+}$, $I[S; \lambda] = I[\lambda^{+}] \upharpoonright \operatorname{Tr}(S)$. This stands in contrast to a model of Gitik and Rinot in which GCH holds and the last equality fails for $\lambda = \aleph_{\omega}$ and some stationary $S \subset \aleph_{\omega+1}$.

1. INTRODUCTION

Hereafter, λ denotes a singular cardinal. A longstanding open problem of Shelah is whether GCH implies that $\Diamond(E_{cf(\lambda)}^{\lambda^+})$ holds. By [She84], an affirmative answer follows from \Box_{λ}^* .¹

A few days ago, in [Lev22, §2.1], Levine published a compactness theorem for \Box_{λ}^{*} , proving that if λ is a singular strong limit cardinal of uncountable cofinality, and $\{\mu < \lambda \mid \Box_{\mu}^{*} \text{ holds}\}$ is stationary, then the existence of a good scale at a particular product of cardinals implies that \Box_{λ}^{*} holds. The purpose of this note is to prove that an affirmative answer to Shelah's question follows without the good scale hypothesis.

Theorem A. Suppose that λ is a singular strong limit cardinal of uncountable cofinality and $\{\mu < \lambda \mid \Box^*_{\mu} \text{ holds}\}$ is stationary. Then $2^{\lambda} = \lambda^+$ iff $\Diamond(E^{\lambda^+}_{cf(\lambda)})$ holds.

The proof makes use of our previous paper [Rin10]. In that paper, for every stationary $S \subset \lambda^+$, an ideal $I[S; \lambda]$ over $\operatorname{Tr}(S) := \{\delta \in E_{>\omega}^{\lambda^+} \mid S \cap \delta \text{ is stationary in } \delta\}$ was introduced, and Shelah's result was factored through this ideal, as follows.

Fact 1 ([Rin10]). (1) If \Box_{λ}^* holds, then $I[S;\lambda]$ contains a stationary set for every stationary $S \subset \lambda^+$ that reflects stationary often;

- (2) For every stationary $S \subset \lambda^+$ such that $I[S;\lambda]$ contains a stationary set, $2^{\lambda} = \lambda^+$ iff $\Diamond(S)$ holds;
- (3) Assuming the consistency of a supercompact cardinal, it is consistent that □^{*}_λ fails, and yet, I[S; λ] contains a stationary set for every stationary S ⊂ λ⁺ that reflects stationary often.

Here, via minor adjustments to Levine's argument from [Lev22], it is proved:

Date: August 29, 2022.

¹All missing definitions may be found in Subsection 1.1 below.

Theorem B. Suppose that λ is a singular strong limit cardinal of uncountable cofinality and $\{\mu < \lambda \mid \Box^*_{\mu} \text{ holds}\}$ is stationary in λ .

For every stationary $S \subset \lambda^+$, $I[S; \lambda] = I[\lambda^+] \upharpoonright \operatorname{Tr}(S)$.

The point is that by a celebrated theorem of Shelah [She93], $I[\lambda^+] \upharpoonright E_{>cf(\lambda)}^{\lambda^+}$ indeed contains a stationary set, and hence Theorem A follows from Theorem B together with Fact 1. To compare, by [GR12, Theorem A], it is relatively consistent with the existence of a supercompact cardinal that GCH holds, $I[\aleph_{\omega+1}] = \mathcal{P}(\aleph_{\omega+1})$, and there exists a stationary $S \subseteq E_{\omega}^{\aleph_{\omega+1}}$ that reflects stationarily often, and yet, $I[S;\aleph_{\omega}]$ contains no stationary set. Note that GCH implies that $\Box_{\aleph_n}^*$ holds for all $n < \omega$.

1.1. Notation and definitions. For a set of ordinals A, we write $\operatorname{acc}^+(A) := \{\alpha < \sup(A) \mid \sup(A \cap \alpha) = \alpha > 0\}$ and $\operatorname{acc}(A) := A \cap \operatorname{acc}^+(A)$. For two nonempty sets of ordinals A, B, we write $A \subseteq^* B$ to mean that $\sup(A \setminus B) < \sup(B)$.

For a pair of infinite regular cardinals $\theta < \kappa$, let $E_{\theta}^{\kappa} := \{\alpha < \kappa \mid \mathrm{cf}(\alpha) = \theta\}$, and define $E_{\leq \theta}^{\kappa}$, $E_{<\theta}^{\kappa}$, $E_{\geq \theta}^{\kappa}$, $E_{\neq \theta}^{\kappa}$ analogously. For a stationary subset $S \subseteq \kappa$, Jensen's diamond principle $\Diamond(S)$ asserts the existence of a sequence $\langle A_{\gamma} \mid \gamma \in S \rangle$ such that, for every subset $A \subseteq \kappa$, for stationarily many $\gamma \in S$, $A_{\gamma} = A \cap \gamma$ (cf. [Rin11]). For an infinite cardinal μ , Jensen's weak square principle \Box_{μ}^{*} asserts the existence of a matrix $\langle C_{\delta,i} \mid \delta < \mu^{+}, i < \mu \rangle$ such that for all $\delta < \mu^{+}$ and $i < \mu$:

(1) $C_{\delta,i}$ is a closed subset of δ with $\sup(C_{\delta,i}) = \sup(\delta)$ and $\operatorname{otp}(C_{\delta,i}) \leq \kappa$;

(2) for every $\gamma \in \operatorname{acc}(C_{\delta,i})$, there exists $j < \mu$ such that $C_{\delta,i} \cap \gamma = C_{\gamma,j}$.

In case that μ is a singular cardinal, one can moreover demand that $\operatorname{otp}(C_{\delta,i})$ be strictly smaller than μ for all $\delta < \mu^+$ and $i < \mu$.

2. *pcf* scales

Throughout this section, λ denotes a singular cardinal of uncountable cofinality, and $\vec{\lambda} = \langle \lambda_i \mid i < cf(\lambda) \rangle$ is a strictly increasing sequence of regular cardinals, converging to λ . We start by recalling a few rudimentary concepts from *pcf* theory.

Definition 2.1. Let $f, g \in \prod \vec{\lambda}$.

- For an ordinal $i < cf(\lambda)$, we write $f <^{i} g$ iff f(j) < g(j) for all $j \in cf(\lambda) \setminus i$;
- We write $f <^* g$ to express that $f <^i g$ for some $i < cf(\lambda)$.

Definition 2.2. A sequence $\vec{f} = \langle f_{\delta} | \delta < \lambda^+ \rangle$ is said to be a *scale in* $\prod \vec{\lambda}$ iff all of the following hold:

- for every $\delta < \lambda^+, f_{\delta} \in \prod \overline{\lambda}$;
- for all $\gamma < \delta < \lambda^+$, $f_{\gamma} < * f_{\delta}$;
- for every $g \in \prod \vec{\lambda}$, there exists $\delta < \lambda^+$ such that $g <^* f_{\delta}$.

Fact 2.3 (Shelah, [She94, Claim 2.1]). For every singular cardinal λ of uncountable cofinality, there exists a strictly increasing and continuous sequence $\langle \mu_i \mid i < cf(\lambda) \rangle$ of cardinals, converging to λ , such that $\prod_{i < cf(\lambda)} \mu_i^+$ admits a scale.

Definition 2.4. Suppose $\vec{f} = \langle f_{\delta} | \delta < \lambda^+ \rangle$ is a scale in $\prod \vec{\lambda}$. Let $\delta \in \operatorname{acc}(\lambda^+)$.

- δ is good (with respect to \vec{f}) iff there exist a cofinal subset $A \subseteq \delta$ and $i < \operatorname{cf}(\lambda)$ such that, for every pair of ordinals $\gamma < \delta$ from $A, f_{\gamma} <^{i} f_{\delta}$;
- $h \in \prod \vec{\lambda}$ is an *exact upper bound* for $\vec{f} \upharpoonright \delta$ iff the two hold:

- (1) for every $\gamma < \delta$, $f_{\gamma} <^* h$;
- (2) for every $g \in \prod \dot{\lambda}$ such that $g <^* h$, there exists $\gamma < \delta$ such that $g <^* f_{\gamma}$.

Remark 2.5. (1) Every $\delta \in \operatorname{acc}(\lambda^+)$ of cofinality $\langle \operatorname{cf}(\lambda)$ is good;

(2) An ordinal $\delta \in E_{>cf(\lambda)}^{\lambda^+}$ is good iff $\vec{f} \upharpoonright \delta$ admits an exact upper bound.

Following Cummings, Foreman and Magidor [CFM01, Definition 3.9], we say that a scale $\vec{f} = \langle f_{\delta} \mid \delta < \lambda^+ \rangle$ is *continuous* iff for every $\delta \in \operatorname{acc}(\lambda^+)$ such that $\vec{f} \upharpoonright \delta$ admits an exact upper bound, f_{δ} is an exact upper bound.

In [Lev22, §2.1], Levine introduced the concept of *totally continuous* scales. A natural weakening of which reads as follows.

Definition 2.6 (Aligned scales). We say that a scale $\vec{f} = \langle f_{\delta} | \delta < \lambda^+ \rangle$ is aligned iff for every $\delta \in \operatorname{acc}(\lambda^+)$, all of the following hold:

 if cf(δ) < cf(λ), then for every cofinal B ⊆ δ of order-type cf(δ), for all but boundedly many i < cf(λ),

$$f_{\delta}(i) = \sup\{f_{\beta}(i) \mid \beta \in B\};\$$

if cf(δ) = cf(λ), then for every club B ⊆ δ of order-type cf(δ), for club many i < cf(λ),

 $f_{\delta}(i) = \sup\{f_{\beta}(i) \mid \beta \in B, \operatorname{otp}(B \cap \beta) < i\};$

• if $\operatorname{cf}(\delta) > \operatorname{cf}(\lambda)$ is good, then for every cofinal $A \subseteq \delta$, there exists a cofinal $B \subseteq A$ such that for all but boundedly many $i < \operatorname{cf}(\lambda), \langle f_{\beta}(i) \mid \beta \in B \rangle$ is strictly increasing and converging to $f_{\delta}(i)$. In particular, f_{δ} is an exact upper bound of $\vec{f} \upharpoonright \delta$.

Remark 2.7. Levine's notion of 'totally continuous' scale is the conjunction of a scale being aligned and all of its points of cofinality $> cf(\lambda)$ being good.

A combination of Fact 2.3 with Levine's proof of [Lev22, Lemma 2.6] yields the following:

Fact 2.8 (Shelah + Levine). For every singular cardinal λ of uncountable cofinality, there exists a strictly increasing and continuous sequence $\langle \mu_i \mid i < cf(\lambda) \rangle$ of cardinals, converging to λ , such that $\prod_{i < cf(\lambda)} \mu_i^+$ admits an aligned scale.

3. A relative of the approachability ideal

Definition 3.1 ([Rin10, Definition 2.4]). For a singular cardinal λ and a proper subset $S \subset \lambda^+$, $I[S; \lambda]$ stands for the collection of all subsets $T \subseteq \text{Tr}(S)$ for which there exist a club $C \subseteq \lambda^+$ and a coloring $d : [\lambda^+]^2 \to \text{cf}(\lambda)$ such that all of the following hold:

(1) d is locally small, that is, for every $\gamma < \lambda^+$ and every $i < cf(\lambda)$,

 $|\{\alpha < \gamma \mid d(\alpha, \gamma) \le i\}| < \lambda;$

(2) d is subadditive of the first kind, that is, for all $\alpha < \beta < \gamma < \lambda^+$,

$$d(\alpha, \gamma) \le \max\{(\alpha, \beta), d(\beta, \gamma)\};\$$

(3) for every $\delta \in T \cap C \cap E^{\lambda^+}_{> \mathrm{cf}(\lambda)}$, there exists a stationary $S_{\delta} \subseteq S \cap \delta$ with $\sup(d^{(\ell)}[S_{\delta}]^2) < \mathrm{cf}(\lambda)$.

ASSAF RINOT

To compare, Shelah's weak approachability ideal $I[\lambda^+; \lambda]$ stands for the collection of all subsets $T \subseteq \lambda^+$ for which there exist a club $C \subseteq \lambda^+$ and a coloring $d : [\lambda^+]^2 \to$ $cf(\lambda)$ satisfying Clauses (1) and (2) above together with the following:

(3) for every $\delta \in T \cap C \cap E_{\geq cf(\lambda)}^{\lambda^+}$, there exists a *cofinal* $X_{\delta} \subseteq \delta$ such that $\sup(d^{"}[X_{\delta}]^2) < \operatorname{cf}(\lambda).$

Remark 3.2. We omit the definition of Shelah's approachability ideal $I[\lambda^+]$ and settle for stating that if λ is a strong limit, then $I[\lambda^+; \lambda]$ and $I[\lambda^+]$ coincide (see [Eis10, Proposition 3.23]).

Remark 3.3. For every $S \subset \lambda^+$, $I[S;\lambda] \subseteq I[\lambda^+;\lambda] \upharpoonright \operatorname{Tr}(S)$. By [Rin10, Corollary 2.10], if $S \subseteq E_{\neq cf(\lambda)}^{\lambda^+}$, then $I[S; \lambda] = I[\lambda^+; \lambda] \upharpoonright \operatorname{Tr}(S)$.

The next result shows it is consistent that for a singular strong limit of *countable* cofinality, for some stationary $S \subset \lambda^+$, $I[S; \lambda] \neq I[\lambda^+; \lambda] \upharpoonright \operatorname{Tr}(S)$.

Fact 3.4 ([GR12, Theorem A]). Assuming the consistency of a supercompact cardinal, it is consistent that GCH holds, $I[\aleph_{\omega+1}] = \mathcal{P}(\aleph_{\omega+1})$, and yet, for some stationary $S \subseteq E_{\omega}^{\aleph_{\omega+1}}$ that reflects stationarily often, $I[S;\aleph_{\omega}]$ contains no stationary set.

Our proof of Theorem B will make use of the following characterization of $I[S; \lambda]$.

Fact 3.5 ([Rin10, Proposition 3.17]). Suppose that λ is a singular cardinal, and $S \subseteq E_{\mathrm{cf}(\lambda)}^{\lambda^+}$. A subset $T \subseteq \mathrm{Tr}(S)$ is in $I[S;\lambda]$ iff there exist collections $\{A_\delta \mid \delta \in T\}$ and $\{B^i_{\gamma} \mid \gamma \in S, i < \lambda\} \subseteq [\lambda^+]^{<\lambda}$ such that for club many $\delta \in T$:

(1) $\sup(A_{\delta}) = \delta;$

(2) $\{\gamma \in S \cap \delta \mid \exists i < \lambda [A_{\delta} \cap \gamma \subseteq^* B^i_{\gamma}]\}$ is stationary in δ .

Theorem 3.6. Suppose that λ is a singular strong limit cardinal of uncountable cofinality and $\{\mu < \hat{\lambda} \mid \Box_{\mu}^* \text{ holds}\}$ is stationary in λ .

For every stationary $S \subset \lambda^+$, $I[S; \lambda] = I[\lambda^+] \upharpoonright \operatorname{Tr}(S)$.

Proof. By Fact 2.8, fix a strictly increasing and continuous sequence $\langle \mu_i \mid i < cf(\lambda) \rangle$ of cardinals, converging to λ , and a sequence $\vec{f} = \langle f_{\delta} | \delta < \lambda^+ \rangle$ that constitutes an aligned scale in $\prod_{i < cf(\lambda)} \mu_i^+$. Clearly,

$$\Sigma := \{ i < \mathrm{cf}(\lambda) \mid \mathrm{cf}(\mu_i) < \mathrm{cf}(\lambda) < \mu_i \& \Box_{\mu_i}^* \text{ holds} \}$$

is a stationary subset of $cf(\lambda)$. For every $i \in \Sigma$, since $\Box_{\mu_i}^*$ holds and μ_i is a singular cardinal, we may fix a matrix $\langle C_{\delta,j}^i | \delta < \mu_i^+, j < \mu_i \rangle$ such that for all $\delta < \mu_i^+$ and $j < \mu_i$:

- (1) $C^{i}_{\delta,j}$ is a closed subset of δ with $\sup(C^{i}_{\delta,j}) = \sup(\delta)$ and $\operatorname{otp}(C^{i}_{\delta,j}) < \mu_{i}$; (2) for every $\gamma \in \operatorname{acc}(C^{i}_{\delta,j})$, there exists $j' < \mu_{i}$ such that $C^{i}_{\delta,j} \cap \gamma = C^{i}_{\gamma,j'}$.

Claim 3.6.1. Let $\delta < \lambda^+$. For every stationary $\Sigma' \subseteq \Sigma$ and every function $g \in$ $\prod_{i \in \Sigma'} \mu_i$, there exists a stationary $\Sigma'' \subseteq \Sigma'$ and a cardinal $\mu < \lambda$ such that, for every $i \in \Sigma''$, $\max\{g(i), \operatorname{otp}(C^i_{f_{\delta}(i), g(i)})\} < \mu$.

Proof. By an application of Fodor's lemma.

For all $\delta < \lambda^+$, a stationary $\Sigma' \subseteq \Sigma$ and $g \in \prod_{i \in \Sigma'} \mu_i$, let

 $A_{\delta,g} := \{ \beta \in E^{\delta}_{<\mathrm{cf}(\lambda)} \mid \sup\{i \in \mathrm{dom}(g) \mid f_{\beta}(i) \notin C^{i}_{f_{\delta}(i),g(i)} \} < \mathrm{cf}(\lambda) \}.$

Claim 3.6.2. Let $\delta < \lambda^+$, a stationary $\Sigma' \subseteq \Sigma$ and $g \in \prod_{i \in \Sigma'} \mu_i$.

- (1) If $cf(\delta) > cf(\lambda)$ and δ is good, then $A_{\delta,g}$ is cofinal in δ ;
- (2) $\operatorname{acc}^+(A_{\delta,g}) \cap E^{\delta}_{<\operatorname{cf}(\lambda)} \subseteq A_{\delta,g};$
- (3) $|A_{\delta,g}| < \lambda$.

Proof. (1) Suppose that $cf(\delta) > cf(\lambda)$ and that δ is good. Let $\epsilon < \delta$, and we will find an element of $A_{\delta,q}$ larger than ϵ . Recursively define a sequence of ordinals $\langle \alpha_n \mid n < \omega \rangle$ in δ , as follows. Let $\alpha_0 := \epsilon$. Next, given $n < \omega$ such that α_n has already been defined, we do the following. For all but boundedly many $i \in \Sigma'$, $f_{\alpha_n}(i) < f_{\delta}(i) = \sup(C^i_{f_{\delta}(i),g(i)})$, and then $\min(C^i_{f_{\delta}(i),g(i)} \setminus (f_{\alpha_n}(i)+1))$ is a welldefined element of $f_{\delta}(i)$. As \vec{f} is aligned and δ is good, f_{δ} is an exact upper bound for $\vec{f} \upharpoonright \delta$, so we may find $\alpha_{n+1} < \delta$ such that, for all but boundedly many $i \in \Sigma'$:

$$f_{\alpha_n}(i) < \min(C^i_{f_{\delta}(i),g(i)} \setminus (f_{\alpha_n}(i)+1)) < f_{\alpha_{n+1}}(i).$$

Put $\beta := \sup_{n < \omega} \alpha_n$, so that $\beta \in E^{\delta}_{< cf(\lambda)}$. Then, for all but boundedly many $i \in \Sigma'$:

- ⟨f_{αn}(i) | n < ω⟩ is a strictly increasing sequence converging to f_β(i);
 ⟨min(Cⁱ_{fδ(i),g(i)} \ (f_{αn}(i) + 1)) | n < ω⟩ is a strictly increasing sequence converging to f_β(i).

In particular, for all but boundedly many $i \in \Sigma'$, $f_{\beta}(i) \in \operatorname{acc}(C^{i}_{f_{\delta(i)},g(i)})$. Altogether, β is an element of $A_{\delta,g}$ above ϵ .

(2) Given $\gamma \in \operatorname{acc}^+(A_{\delta,g}) \cap E^{\delta}_{\leq \operatorname{cf}(\lambda)}$, we may find a cofinal subset $B \subseteq A_{\delta,g} \cap \gamma$ of order-type $cf(\gamma)$ and a large enough $\varepsilon < cf(\lambda)$ such that:

- for every $\beta \in B$, for every $i \in \Sigma' \setminus \varepsilon$, $f_{\beta}(i) \in C^{i}_{f_{\delta}(i),q(i)}$;
- for every $i \in \Sigma' \setminus \varepsilon$, $f_{\gamma}(i) = \sup_{\beta \in \beta} f_{\beta}(i)$.

Therefore, for every $i \in \Sigma' \setminus \varepsilon$, $f_{\gamma}(i) \in \operatorname{acc}(C^{i}_{f_{\delta(i)},g(i)})$. So, $\gamma \in A_{\delta,g}$. (3) Use Claim 3.6.1 to fix a stationary $\Sigma'' \subseteq \Sigma'$ and a cardinal $\mu < \lambda$ such that, for every $i \in \Sigma''$, $\operatorname{otp}(C^i_{f_{\delta}(i),g(i)}) < \mu$. It follows that every element β of $A_{\delta,g}$ may be encoded by some function from Σ'' to μ , and hence $|A_{\delta,q}| \leq \mu^{\mathrm{cf}(\lambda)} < \lambda$.

We are now in conditions to prove the theorem. Since λ is a strong limit, $I[\lambda^+;\lambda] = I[\lambda^+]$. So, by Remark 3.3, it suffices to prove that $I[S;\lambda] \supseteq I[\lambda^+] \upharpoonright \operatorname{Tr}(S)$ for every stationary $S \subseteq E_{cf(\lambda)}^{\lambda^+}$. To this end, let $S \subseteq E_{cf(\lambda)}^{\lambda^+}$ be stationary, and let T be a subset of Tr(S) lying in $I[\lambda^+]$; we shall show that $T \in I[S; \lambda]$, using Fact 3.5.

First, as $T \in I[\lambda^+]$, by [CFM04, Corollary 2.15], we may fix a club $D \subseteq \lambda^+$ such that every $\delta \in T \cap D$ is good for with respect to f. Let $\vec{0}$ denote the constant function $g: \Sigma \to \{0\}$. By Claim 3.6.2, for every $\delta \in T \cap D$, $A_{\delta} := A_{\delta,\vec{0}}$ is a cofinal subset of δ of size $< \lambda$. In addition, for every $\delta \in T$, $S \cap \delta$ is stationary in δ . As $S \subseteq E_{cf(\lambda)}^{\lambda^+}$, it thus suffices to prove the following.

Claim 3.6.3. Let $\gamma \in E_{cf(\lambda)}^{\lambda^+}$. Then the following set has size no more than λ :

$$\mathcal{B}_{\gamma} := \{ A_{\delta} \cap \gamma \mid \delta \in T \cap D, \sup(A_{\delta} \cap \gamma) = \gamma \}.$$

Proof. Let $\delta \in T \cap D$ be such that $\sup(A_{\delta} \cap \gamma) = \gamma$. By Claim 3.6.2(2), we may fix a strictly increasing and continuous sequence $\langle \beta_{\xi} | \xi < cf(\lambda) \rangle$ of ordinals in $A_{\delta} \cap \gamma$, converging to γ . As \vec{f} is aligned, we may fix a club Z in cf(λ), such that, for every $\zeta \in Z$,

$$f_{\gamma}(\zeta) = \sup_{\xi < \zeta} f_{\beta_{\xi}}(\zeta).$$

Recalling the definition of A_{δ} , for every $\xi < cf(\lambda)$,

$$\sup\{i \in \Sigma \mid f_{\beta_{\xi}}(i) \notin C^{i}_{f_{\delta}(i),0}\} < \operatorname{cf}(\lambda).$$

So, by possibly shrinking Z, we may assume that, for every $\zeta \in Z$ and every $\xi < \zeta$,

$$\sup\{i \in \Sigma \mid f_{\beta_{\xi}}(i) \notin C^{i}_{f_{\delta}(i),0}\} < \zeta,$$

and in particular, if $\zeta \in \Sigma$, then $f_{\beta_{\xi}}(\zeta) \in C^{\zeta}_{f_{\delta}(\zeta),0}$. Altogether, for every $i \in Z \cap \Sigma$, $f_{\gamma}(i) \in \operatorname{acc}(C^{i}_{f_{\delta}(i),0})$, so that, for some $g(i) < \mu_{i}$,

$$C^i_{f_\delta(i),0} \cap f_\gamma(i) = C^i_{f_\gamma(i),g(i)}.$$

It now follows from Claim 3.6.1 that there exists a stationary $\Sigma'' \subseteq Z \cap \Sigma$, a cardinal $\mu < \lambda$, and a function $g: \Sigma'' \to \mu$ such that, for every $i \in \Sigma'', C^i_{f_{\delta}(i),0} \cap f_{\gamma}(i) =$ $C^{i}_{f_{\gamma}(i),g(i)}$. In particular, $A_{\delta} \cap \gamma \subseteq A_{\gamma,g}$ for such a g. So,

$$\mathcal{B}_{\gamma} \subseteq \bigcup \{ \mathcal{P}(A_{\gamma,g}) \mid \Sigma'' \subseteq Z \cap \Sigma \text{ stationary}, \mu < \lambda, g : \Sigma'' \to \mu \}.$$

Recalling Claim 3.6.2(3) and the fact that λ is a strong limit, we infer that $|\mathcal{B}_{\gamma}| \leq \lambda$, as sought.

This completes the proof.

Fact 3.7 ([Rin10, Theorems 1 and 4]). Suppose that λ is a singular cardinal. $S \subset \lambda^+$, and $I[S; \lambda]$ contains a stationary set. Then:

- $NS_{\lambda^+} \upharpoonright S$ is non-saturated;
- $2^{\lambda} = \lambda^+$ iff $\Diamond(S)$ holds.

Corollary 3.8. Suppose that λ is a singular strong limit cardinal of uncountable cofinality and $\{\mu < \lambda \mid \Box^*_{\mu} \text{ holds}\}$ is stationary. Then $2^{\lambda} = \lambda^+$ iff $\Diamond(E_{cf(\lambda)}^{\lambda^+})$ holds.

Proof. By Theorem 3.6, $I[E_{cf(\lambda)}^{\lambda^+}; \lambda] = I[\lambda^+] \upharpoonright E_{>cf(\lambda)}^{\lambda^+}$. By [She93], $I[\lambda^+] \upharpoonright E_{>cf(\lambda)}^{\lambda^+}$ contains a stationary set. Now, appeal to Fact 3.7(2).

References

- [CFM01] James Cummings, Matthew Foreman, and Menachem Magidor. Squares, scales and stationary reflection. J. Math. Log., 1(1):35-98, 2001.
- [CFM04] James Cummings, Matthew Foreman, and Menachem Magidor. Canonical structure in the universe of set theory. I. Ann. Pure Appl. Logic, 129(1-3):211-243, 2004.
- Todd Eisworth. Successors of singular cardinals. In Handbook of set theory. Vols. 1, 2, [Eis10]3, pages 1229–1350. Springer, Dordrecht, 2010.
- [GR12] Moti Gitik and Assaf Rinot. The failure of diamond on a reflecting stationary set. Trans. Amer. Math. Soc., 364(4):1771-1795, 2012.
- [Lev22] Maxwell Levine. On compactness of weak square at singualrs of uncountable cofinality. http://arxiv.org/abs/2208.09380, 2022. preprint, August 2022.
- [Rin10] Assaf Rinot. A relative of the approachability ideal, diamond and non-saturation. J. Symbolic Logic, 75(3):1035-1065, 2010.
- Assaf Rinot. Jensen's diamond principle and its relatives. In Set theory and its appli-[Rin11] cations, volume 533 of Contemp. Math., pages 125-156. Amer. Math. Soc., Providence, RI. 2011.
- Saharon Shelah. Diamonds, uniformization. J. Symbolic Logic, 49(4):1022-1033, 1984. [She84]

- [She93] Saharon Shelah. Advances in cardinal arithmetic. In *Finite and Infinite Combinatorics in Sets and Logic*, pages 355–383. Kluwer Academic Publishers, 1993. N.W. Sauer et al (eds.). 0708.1979.
- $\begin{array}{lll} \mbox{[She94]} & \mbox{Saharon Shelah. } \aleph_{\omega+1} \mbox{ has a Jonsson Algebra. In Cardinal Arithmetic, volume 29 of } \\ & Oxford \ Logic \ Guides, \mbox{ chapter II. Oxford University Press, 1994. Ch. II of [Sh:g].} \end{array}$

Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel. URL: http://www.assafrinot.com